Mathematics

DEGREE-Associate in Science for Transfer Degree

Mathematics

UNITS

The Associate in Science in Mathematics for Transfer at Los Medanos College prepares students to transfer into a curriculum at a 4 year institution to pursue a baccalaureate degree in Mathematics. To achieve the degree students must:

1. Complete 60 semester units that are eligible for transfer to the California State University, including both of the following:

- a. The Intersegmental General Education Transfer Curriculum (IGETC) or the California State University General Education -Breadth Requirements.
- b. A minimum of 18 semester units in the Mathematics major, as determined by the community college district.
- 2. Obtainment of a minimum grade point average of 2.0.

ADTs also require that students must earn a C or better in all courses required for the major or area of emphasis. A "P" (Pass) grade is not an acceptable grade for courses in the major.

REQUIRED COURSES:

MATH-050	Calculus with Analytic Geometry I	4
MATH-060	Calculus with Analytic Geometry II	4
MATH-070	Calculus with Analytic Geometry III	4
TOTAL UNITS		12

CHOSE A MINIMUM OF 6 UNITS FROM THE LISTS BELOW,

WITH AT LEAST 3 UNITS FROM LIST A

LIST A: (SELECT 1-2 COURSES)			
MATH-080	Differential Equations	3	
MATH-075	Linear Algebra	3	
TOTAL UNITS		3-6	

LIST B: SELECT ONE COURSE (2-4 UNITS)

MATH-160	Discrete Math	4
PHYS-040	Physics for Scientists & Engineers	4
MATH-034	Introduction to Statistics	4
r COMSC-044 or	Intro to C++ Programming Part I	3
eNGIN-020	Programming with C++ for Engineers and Scientists	4
COMSC-132	Programming and Methodologies II	3 _
TOTAL UNITS		3-4
TOTAL UNITS FOR THE MAJOR		18-19
TOTAL UNITS FOR THE DEGREE		60

Program Student Learning Outcomes

- Preparation and mathematical maturity: Be prepared for the mathematical or statistical reasoning required in upper division work in their major, including the ability to generalize mathematical concepts and comprehend increasing levels of mathematical abstraction.
- 2. Mathematical literacy:

Communicate using mathematics:

- Read with comprehension documents having mathematical content and participate cogently in discussions involving mathematics;
- b. Clearly articulate mathematical information accurately and effectively, using a form, structure and style that suit the purpose (including written and face-to-face presentation).

3. Problem-solving ability:

- Reason with and apply mathematical concepts, principles and methods to solve problems or analyze scenarios in real-world contexts relevant to their major;
- b. Use technology effectively to analyze situations and solve problems;
- c. Estimate and check answers to mathematical problems in order to determine reasonableness, identify alternatives, and select optimal results.
- 4. Modeling ability:
 - a. Construct and interpret mathematical models using numerical, graphical, symbolic and verbal representations with the help of technology where appropriate in order to draw conclusions or make predictions;
 - b. Recognize and describe the limits of mathematical and statistical methods.
- 5. Effective learning skills:
 - a. Independently acquire further mathematical knowledge without guidance, take responsibility for their own learning, determine appropriateness and correctness of their own work and function effectively in different learning environments.
 - b. Succeed in different learning environments, particularly in a group setting of working collaboratively with others.