

Practice Challenge Exam for Math 25

Please Read Carefully

The Math Competency requirement for an Associate Degree (before the 2009-2010 Catalog year) was Math 25 or higher. If you began course work in Fall '09 or later, the Competency requirement is Math 26 or higher. **Please see a counselor or Admissions to verify your requirement**.

Passing of the challenge exam allows you to take any course that says "Prerequisite: Math 25 or Equivalent." You do not receive units or a grade for passing the exam.

For Competency, students must either:

- 1. Complete Math 25 or higher, with a grade of "C" or better, **-or**-
- 2. Score a grade of 4 or 5 on the AP calculus Exam, -or-
- 3. Pass the Math 25 Competency Exam." Note: No grade or units are received for passing the competency exam. Results do not transfer and are valid only at LMC.

Exam Information

Time: 90 minutes.

Passing Score: 20 out of 25 problems correct.

When/Where:The exam is scheduled individually in MA 107 (Pittsburg) or in room 15 (Brentwood).Please contact one of the Math Lab Coordinators at (925) 439-2181 ext 3470 (Pittsburg)ext 3358 (Pittsburg), or 6218 (Brentwood) in order to make an appointment.

Appointment Date: _____

Topics: Elementary Algebra

Preparation: Study the attached sample problems. Review as needed.

You may use: Calculator, pencil, and eraser. No graphing calculators are allowed; scratch paper will be provided.

Identification: Photo ID required - **Drivers License/CA ID or a Passport**. **Results:** Usually available within 1 week.

Repeat Attempts: Exam may be taken a total of three times. If the exam is not passed after the third attempt, use one of the options listed above to satisfy the AA degree math proficiency.

- 1. The length of a rectangular tennis court is five feet more than twice the width. The length is 83 feet. Find the width.
- (a) 171 ft. (b) 44 ft. (c) 39 ft. (d) 156 ft. (e) None of these

2. When graphing a system of linear equations that has no solution, one obtains:

(a) Parallel lines(b) Intersecting lines(c) Coinciding lines(d) No graph(e) None of these

3. Which simplification is incorrect?

(a) $5x(x-y) + y(4x-y) = 5x^2 - xy - y^2$ (b) $3(x-y) + 2(x+y) = 5x^2$ (c) $\frac{5x}{7} - \frac{2x}{3} = \frac{x}{21}$ (d) $\frac{5x}{7} + \frac{2x}{7} = x$ (e) None of these

4. The statement "twice the sum of ten and a number n" translates into the algebraic expression:

(a) 2(10) + n (b) 2(n + 10) (c) 2n + 10(d) $10 + \frac{n}{2}$ (e) None of these

5. The polynomial $2x^3 - x^2 + 6x - 3$ factors into:

(a) $(2x + 1)(x^2 - 3)$ (b) $(2x - 1)(x^2 - 3)$ (c) $(2x - 1)(x^2 + 3)$ (d) $(2x + 1)(x^2 + 3)$ (e) None of these

6. What is the remainder when $P(x) = x^3 + x^2 - 7x + 5$ is divided by x + 5?

(a) 60 (b) 12 (c) 0 (d) 5 (e) None of these

7. Using the quadratic formula, which of the following quadratic equations has no real solutions?

(a) $2x^2 + x + 1 = 0$ (b) $3x^2 + 2x - 1 = 0$ (c) $2x^2 + 2x - 1 = 0$ (d) $x^2 + 2x - 3 = 0$ (e) None of these

- 8. Eliminating x from the given linear system leads to: 5x + 2y = 76x - 3y = 4
- (a) 3y = 22 (b) 27y = 22 (c) 3y = 62 (d) 27y = 62 (e) None of these

9. A total of \$13,000 is invested in two funds paying 7% and 9% simple interest. The combined annual interest for the two funds is \$1,020. If x represents the amount invested at 7% and y the amount invested at 9%, the mathematical model for this investment is represented by which system of equations?

(a)
$$0.09x + 0.07y = 1020$$

 $x + y = 13,000$ (b) $0.07x + 0.09y = 13,000$
 $x + y = 1,020$ (c) $0.07x + 0.09y = 1020$
 $x + y = 13,000$ (d) $0.09x + 0.07y = 13,000$
 $x + y = 1,020$

10. Choose the line which is parallel to
$$y = -\frac{1}{3}x + 4$$
.

(a) $x - 3y = 4$
(b) $3x + y = 4$

(c) $x + 3y = 4$

(d) $3x - y = 4$

(e) None of these

- 11. $(3x^3 + 4x^2 5)$ subtracted from $(x^3 3x + 5)$ is:
- (a) $-2x^3 + 4x^2 3x$ (b) $-2x^3 - 4x^2 - 3x + 10$ (c) $2x^3 + 4x^2 + 3x - 10$ (d) $2x^3 - 4x^2 + 3x - 10$ (e) None of these
- 12. The solution to the equation $\frac{2}{x} \frac{3}{4} = \frac{5}{x}$ is: (a) x = 6 (b) x = -4 (c) $x = -\frac{1}{4}$ (d) x = 4 (e) None of these

13. Multiplying (4 + \sqrt{x}) (3 – 2 \sqrt{x}), x \ge 0 and simplifying results is:

(a) 12 − 2x (b) 12 − 2x − 5√x (c) 12 − 5√x (d) 7 − √x (e) None of these

14. A solution to the equation $\sqrt{5}-x = 2 + \sqrt{9}+2x$ is:						
(a) x = 1	(b) x = 8	(c) x = -4	(d) x = 4	(e) None of these		
15. Solve $\sqrt{x-1} + \sqrt{x}$	x-3 = 2					
(a) $\frac{4}{9}$	(b) $\frac{11}{4}$	(c) $\frac{13}{4}$	(d) $\frac{2}{3}$	(e) None of these		
16. The solution of t	he inequality – 4 \leq 4	– 2x < 4 is:				
(a) o < x ≤ 4	(b) o	$\leq x < 4$	(c) – 4	4 ≤ x < 0		
(d) $-4 < x \le 0$	(e) No	one of these				
17. The solution to t	he linear equation	$\frac{x}{3} + \frac{x-2}{4} = -\frac{1}{6}$ is:				
(a) $x = -\frac{4}{7}$	(b) $x = \frac{4}{7}$	(c) $x = \frac{7}{4}$	(d) x = 0	(e) None of these		
18. When simplified	, the sum $\frac{3+2x}{4x^2-1}$ +	$\frac{2x-1}{4x^2-1}$ reduces to:				
(a) $\frac{2}{2x+1}, x \neq -\frac{1}{2}$		(b) $\frac{2}{2x-1} + \frac{1}{2x+1}$		(c) $\frac{2}{2x-1}, x \neq \frac{1}{2}$		
(d) $\frac{4}{4x^2-1}$		(e) None of these				
19. Which of the fol	lowing statements is	false?				

- (a) $(-x)^4 = -x^4$ (b) $(x^3)^2 = x^6$ (c) $(2x)^3 = 2x \cdot 2x \cdot 2x$ (d) $2x^3 = 2 \cdot x \cdot x \cdot x$ (e) $(-x)^3 = -x^3$

20. Rationalize the denominator of the following expression: $\frac{2}{\sqrt{5}+1}$ (a) $\frac{2\sqrt{5}-2}{4}$ (b) $\frac{2\sqrt{5}-2}{6}$ (c) $\frac{2\sqrt{5}+2}{(\sqrt{5}+1)^2}$ (d) $\frac{1}{2}$ (e) $\frac{2}{13}$

22. Determine which of the following statements is incorrect

(a) |-2+3-5| = |-2| + |3| + |-5|(b) |-2+3-5| = |-4|(c) |-2+3-5| - 4 = 0(d) |-2+3-5| > 0(e) |-4| = |4|

22. Determine the inequality of the following graph:

(a) $y \ge -2x + 2$ (b) y < -2x + 2 (c) y > 2x + 2 (d) y < 2x + 2 (e) $y \ge 2x + 2$

23. Simplify the following expression: $\sqrt{x^2y^5} - x\sqrt{9y^5} - xy\sqrt{25y^3}$

- (a) $7xy^2\sqrt{y}$ (b) $-4xy^2 5xy^3\sqrt{y}$ (c) $-7xy^2\sqrt{y}$ (d) $-4x^5\sqrt{y} - 5xy^3\sqrt{y}$ (e) None of these
- 24. Solve the following linear system: x = 3 2y2x + 4y = 6
- (a) No Solutions(b) Infinitely many solutions(c) $x = 0, y = \frac{3}{2}$ (d) x = 1, y = 1(e) None of these
- 25. If the discriminant, $b^2 4ac$, of a quadratic equation with rational coefficients is less than 0, then the solutions are:
- (a) Rational and negative (b) Imaginary (c) Rational and equal
- (d) Rational and unequal

(e) None of the these

		Answers		
1. c	2. a	3. b	4. b	5. c
6. e	7. a	8. b	9. c	10. c
11.b	12. b	13. b	14. c	15. c
16. a	17. b	18. c	19. a	20. a
21. a	22. d	23. c	24. b	25. b